Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Eur Rev Med Pharmacol Sci ; 25(1 Suppl): 81-89, 2021 12.
Article in English | MEDLINE | ID: covidwho-1566966

ABSTRACT

OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new coronavirus responsible for the current pandemic of coronavirus disease 2019 (COVID-19). This virus attacks cells of the airway epithelium by binding transmembrane angiotensin-converting enzyme 2 (ACE2). Hydroxytyrosol has anti-viral properties. Alpha-cyclodextrin can deplete sphingolipids and phospholipids from cell membranes. The aim of the present experimental study was to evaluate the efficacy of α-cyclodextrin and hydroxytyrosol in improving defenses against SARS-CoV-2 infection in in vitro cell models and humans. PATIENTS AND METHODS: For in vitro experiments on Vero E6 cells, RNA for RT-qPCR analysis was extracted from Caco2 and human fibroblast cell lines. For study in humans, the treatment group consisted of 149 healthy volunteers in Northern Cyprus, considered at higher risk of SARS-CoV-2 infection than the general population. The volunteers used nasal spray containing α-cyclodextrin and hydroxytyrosol for 4 weeks. The control group consisted of 76 healthy volunteers who did not use the spray. RESULTS: RT-qPCR experiments on targeted genes involved in endocytosis showed a reduction in gene expression, whereas cytotoxicity and cytoprotective tests showed that the compounds exerted a protective effect against SARS-CoV-2 infection at non-cytotoxic concentrations. None of the volunteers became positive to SARS-CoV-2 RT-qPCR assay during the 30 days of treatment. CONCLUSIONS: Treatment with α-cyclodextrin and hydroxytyrosol nasal spray improved defenses against SARS-CoV-2 infection and reduced synthesis of viral particles.


Subject(s)
Anti-Infective Agents/pharmacology , Phenylethyl Alcohol/analogs & derivatives , SARS-CoV-2/drug effects , Virus Internalization/drug effects , alpha-Cyclodextrins/pharmacology , Administration, Intranasal , Adult , Aged , Animals , Anti-Infective Agents/administration & dosage , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Cell Line , Chlorocebus aethiops , Female , Gene Expression/drug effects , Health Personnel/statistics & numerical data , Humans , Male , Middle Aged , Phenylethyl Alcohol/administration & dosage , Phenylethyl Alcohol/pharmacology , RNA, Viral/analysis , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Young Adult , alpha-Cyclodextrins/administration & dosage
2.
Eur Rev Med Pharmacol Sci ; 25(1 Suppl): 67-73, 2021 12.
Article in English | MEDLINE | ID: covidwho-1566965

ABSTRACT

A vast majority of COVID-19 patients experience fatigue, extreme tiredness and symptoms that persist beyond the active phase of the disease. This condition is called post-COVID syndrome. The mechanisms by which the virus causes prolonged illness are still unclear. The aim of this review is to gather information regarding post-COVID syndrome so as to highlight its etiological basis and the nutritional regimes and supplements that can mitigate, alleviate or relieve the associated chronic fatigue, gastrointestinal disorders and continuing inflammatory reactions. Naturally-occurring food supplements, such as acetyl L-carnitine, hydroxytyrosol and vitamins B, C and D hold significant promise in the management of post-COVID syndrome. In this pilot observational study, we evaluated the effect of a food supplement containing hydroxytyrosol, acetyl L-carnitine and vitamins B, C and D in improving perceived fatigue in patients who recovered from COVID-19 but had post-COVID syndrome characterized by chronic fatigue. The results suggest that the food supplement could proceed to clinical trials of its efficacy in aiding the recovery of patients with long COVID.


Subject(s)
COVID-19/complications , Dietary Supplements , Acetylcarnitine/administration & dosage , Adult , Aged , COVID-19/diet therapy , COVID-19/pathology , COVID-19/psychology , COVID-19/virology , Dietary Supplements/adverse effects , Fatigue/etiology , Female , Gastrointestinal Diseases/etiology , Humans , Male , Middle Aged , Phenylethyl Alcohol/administration & dosage , Phenylethyl Alcohol/analogs & derivatives , Pilot Projects , SARS-CoV-2/isolation & purification , Self Report , Surveys and Questionnaires , Vitamins/administration & dosage , Post-Acute COVID-19 Syndrome
3.
Viruses ; 13(2)2021 02 02.
Article in English | MEDLINE | ID: covidwho-1154509

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally. Although measures to control SARS-CoV-2, namely, vaccination, medication, and chemical disinfectants are being investigated, there is an increase in the demand for auxiliary antiviral approaches using natural compounds. Here we have focused on hydroxytyrosol (HT)-rich aqueous olive pulp extract (HIDROX®) and evaluated its SARS-CoV-2-inactivating activity in vitro. We showed that the HIDROX solution exhibits time- and concentration-dependent SARS-CoV-2-inactivating activities, and that HIDROX has more potent virucidal activity than pure HT. The evaluation of the mechanism of action suggested that both HIDROX and HT induced structural changes in SARS-CoV-2, which changed the molecular weight of the spike proteins. Even though the spike protein is highly glycosylated, this change was induced regardless of the glycosylation status. In addition, HIDROX or HT treatment disrupted the viral genome. Moreover, the HIDROX-containing cream applied on film showed time- and concentration-dependent SARS-CoV-2-inactivating activities. Thus, the HIDROX-containing cream can be applied topically as an antiviral hand cream. Our findings suggest that HIDROX contributes to improving SARS-CoV-2 control measures.


Subject(s)
Antiviral Agents/pharmacology , Olea , Phenylethyl Alcohol/analogs & derivatives , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Administration, Topical , Animals , Antiviral Agents/chemistry , Carbohydrates/chemistry , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/chemistry , Genome, Viral/drug effects , Glycosylation , Microbial Sensitivity Tests , Phenylethyl Alcohol/administration & dosage , Phenylethyl Alcohol/pharmacology , Phosphoproteins/chemistry , Plant Extracts/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Skin Cream , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells , Virus Inactivation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL